Sarcasm Detection Using Deep Learning With Contextual Features
نویسندگان
چکیده
Our work focuses on detecting sarcasm in tweets using deep learning extracted features combined with contextual handcrafted features. A feature set is from a Convolutional Neural Network (CNN) architecture before it carefully sets. These sets are created based their respective explanations. Each specifically designed for the sole task of detection. The objective to find most optimal Some good go even when used independence. Other not really significant without any combination. results experiments positive terms Accuracy, Precision, Recall and F1-measure. combination classified few machine techniques comparison purposes. Logistic Regression found be best classification algorithm this task. Furthermore, result recent works performance each also shown as additional information.
منابع مشابه
Tweet Sarcasm Detection Using Deep Neural Network
Sarcasm detection has been modeled as a binary document classification task, with rich features being defined manually over input documents. Traditional models employ discrete manual features to address the task, with much research effect being devoted to the design of effective feature templates. We investigate the use of neural network for tweet sarcasm detection, and compare the effects of t...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملSarcasm Detection : Building a Contextual Hierarchy
The conundrum of understanding and classifying sarcasm has been dealt with by the traditional theorists as an analysis of a sarcastic utterance and the ironic situation that surrounds it. The problem with such an approach is that it is too narrow, as it is unable to sufficiently utilize the two indispensable agents in making such an utterance, viz. the speaker and the listener. It undermines th...
متن کاملLearning Robust Features using Deep Learning for Automatic Seizure Detection
We present and evaluate the capacity of a deep neural network to learn robust features from EEG to automatically detect seizures. This is a challenging problem because seizure manifestations on EEG are extremely variable both interand intra-patient. By simultaneously capturing spectral, temporal and spatial information our recurrent convolutional neural network learns a general spatially invari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3076789